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FAST ION STOPPING POWER IN DENSE, IONIZED PLASMAS

I. INTRODUCTION

The growing interest in ion beams as drivers in Inertial Confinement

Fusion (ICF) has created a need for reliable methods of calculating beam

stopping power as a function of the temperature, density, and composition of

the target material. Such information is essential for the optimal design of

ICF target pellet configurations. Because the slowing down process can

generate energetic x-rays, it is also of interest in simulation studies for

nuclear weapons effect. It is therefore evident that ion stopping power

studies are useful in a number of areas of interest to the scientific and the

military communities.

In this report, a "local oscillator" model for bound electron stopping

power is described and applied with good success to a number of cold target( calculations. This model is then extended to partially ionized atoms and com-

bined with free electron stopping power equations to calculate total electron

stopping power results for target plasmas of given density, temperature, and

degree of ionization. Results are compared with other calculations.

II. BOUND ELECTRON STOPPING POWER

Two widely used models in the calculation of the stopping power of bound

atomic electrons are the LSS model1, which is valid at low velocities, and

the Bethe theory, which applies to high velocity projectiles. These are com-

plementary models and can be used to span the entire velocity range; for

*2example, Mehlhorn computes results for both models at a given velocity and

takes the lower of the two values as the stopping cross section.

Manuscript submitted January 28,1981.
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The chief difficulty in applying the Bethe theory is obtaining the

average ionization potential I. A calculation of this quantity is a tedious

exercise; hence, various scaling mechanisms have been proposed to estimate
S[e~g. ohe3. Mhon21

.Masher 3 Mehhorn 2 ; to circumvent this difficulty, the "local

oscillator model" (LOM) [Nesbet and Ziegler4] was chosen to represent stopping

by bound electrons. In the LOM. the bound electron stopping cross section is

given by

41 Z1 e f 2
Sb(v) - 2 J 47 r o(r) Ko(T) dr. (1)

mV

where Z is the effective charge of the projectile ion, e and m are the elec-

tron charge and mass, V is the projectile velocity. c(r) is the local bound

electron density in the target atom. and K (T) is a modified zero order Bessel0

function.1 2
T - W 0 (r)/mV (2)

wherei is Planck's constant divided by 27r, and w (r) is the local plasma

frequency at radius r within the atom.

4
There are three assumptions underlying the LOM . The first is that a

loss function can be defined dependent only on the local electron density in

the target atom. The second is that the longitudinal dielectric response can

be represented by e(w) with a single zero at w 1v woo subject to the high

frequency condition

(W) , 1 - w 2 /W2  (3)

appropriate to free electrons. The third assumption is that the induced

polarization charge is spread out from the ion trajectory to some finite radius

of the order of the de Broglie wavelength f/mV. This last assumption is
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Justified by the adiabatic argument that energy will be transferred only to

electrons with velocity less than V. A wave packet with momentum of order

mV would have a spatial spread of order fi/mV.

The electron density P(r) is taken from the Thomas-Fermi (TF) model

proposed by Zink 5 . For an isolated, zero-temperature atom, the TF potential

fjs assumed to have the form

V. Ze/r(l + Ar) 2(4)

where the parameter A is determined by the condition
o

f (r) 4iTr 2 dr - Z, (5)
0

Pi(r) is given by the TF equation

i 3(r) $ L) (2 meVi, ) 3 /2 (6)

and Z is the number of electrons bound to the nucleus. The solution is

A - 1.14 x 108 ZI / 3  cm - . (7)

This leads to the following expression for the TF electron density of an

isolated atom at zero temperature;

c(r) I ZA2 /21 r (1 + Ar)4 . (8)

5
As shown by Zink , this procedure can be applied to a partially ionized

atom. The atomic volume is divided into two regions. The inner region

around the nucleus, bounded by rI, contains the bound electrons and has a

high electron density; the outer region contains free electrons and has

a low density. The outer region is defined by the interval rI L r < R, where

R is the radius of an unionized atom at the given density of the material. The

electron density is given by
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A2Z 3
p (r) 3 + 3Z AO <r<r 14 rR 23 r (+AR) 4  

-

(9)

p() 4 ZR 3 , rI1 < r < R
rrr<

where Z is the number of free electrons.

Zink5 establishes the following relationship between Z* and r

2 Z Ar1  Z
(l+Ar 1) (l+Ar 1) (

Thus, if either Z* or r1 is known, the TF electron density can be written

for the ionized atom.

The approach taken in this calculation is to solve an LTE Saha model for

the average charge Y of the atoms as a function of density and electron

temperature. Then Z* is set equal to Z, and a TF electron density can be

written for an "average atom" in the plasma. In this way, the bound electron

stopping power in a partially ionized plasma can be computed.

The relation given by Brown and Moak6 is used to define the effective

charge Z1 of the projectile atom with nuclear charge Zp;

Z1 /Zp - 1.0 - 1.034 exp (-V/V ), (11)

where

V - Z 0.69 (e 2 /A). (12)

This relation was obtained by plotting several hundred data points for effec-

tive charge and performing a least-squares fit to the results. It was

found empirically in applying the LOM model to cold targets that good agree-

ment with standard results 7 was obtained with Z1 replaced by Zp, the pro-

jectile atomic number in Eq. (1), and the result scaled by
9
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f - (Y/Y)2 , (13)

where y is the result of applying Eq. (11) to the incident ion, and y is the
p

result of Eq. (11) for a proton at the same velocity (with VZ - e2/A). For

incident protons, Zeff/Z - 1.0 gave good results for the energies considered.

The integral in Eq. (l) is taken over the radius of the atom (R for

neutral atoms and r for ionized atoms). Low energy projectiles do not pene-

trate the atomic electron cloud very deeply; hence, only a few points near the

outer edge of the radial grid contribute significantly to :he integral. Also.

in reality, the radius, or boundary, of the atom is not sharply defined. At

low velocity, from Eq. (11), the projectile atom has a small effective charge:

it retains most of its own electron charge cloud which increases the size of

the interaction region with the target atom. It is therefore possible to

omit significant contributions to the stopping cross section at low velocities

by using Eq. (1). Indet,, it sometimes occurs that, at low energy, the results

given by Eq. (1) are too low as compared with accepted values for stopping

7
cross sections e.g., Andersen and Ziegler Thus. there may be a physical

and numerical difficulty with Eq. (1).

According to Land and Brennan9 . for velocities below V the stopping

cross section can be taken to be linear in velocity. Therefore, in this

regime, a scaled cross section is calculated from

Sb (V) - Sb(V ) * (V/V ), V V, (14)

where Sb (VZ) is calculated from Eq. (1). The stopping cross section is

then taken to be the larger of the results of Eq. (1) or Eq. (14).

For velocities larger than V , the projectile has a higher effective

charge and penetrates more deeply into the target atomic electron cloud,

and the smeared out boundary problem does not arise.
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Some results from this model for stopping cross sections for hydrogen

atoms in cold, solid density targets are shown in Figure 1 and compared with

7
the results of Andersen and Ziegler . In Figure la, the agreement is very

good over the entire energy range for an AL target. In Figure Ib, for an Fe

target, the agreement is good, except in the 100-200 keV range, where the LOM

result is about 20 percent low. For the Au target in Figure Ic the errors are

about 14 percent or less. The LOM peaks appear to be shifted to lower energy

by about 20 keV to 50 keV relative to the reference curves. In the high

energy, or Bethe theory, regime, the agreement is very good. As noted earlier,

in the LOM model, a calculation of mean ionization potential is not necessary.

In Figures id to If are shown comparisons of range calculations vs.

energy from this model with Andersen and Ziegler7 results. Good agreement is

obtained again except at the lowest energies; this results from an omission of

energies below 1 keV in these calculations.

Cold target calculations for C atom projectiles are shown in Figure 2.

In Figures 2a and 2b, comparisons with the results of Northcliffe and

Schilling for Ak and Au targets at solid density are given; good agreement is

obtained. Not shown are the range calculations for these situations; they

8
also agree well with Northcliffe and Schilling . Coincidences of the peaks

may be noted in Figure 2.

The previous cases dealt with light ion projectiles on heavier atom

targets. The situation treated in Figures 3a and 3b is the reverse; here

cold target calculatiots at solid density are presented for U atoms impinging

on A,. and Au atoms. For comparison, the results of Northcliffe and

Schilling and Brueckner and MetzlerI0 are also given. In Figure 3a, at low

8
energy, the LOM results agree very well with Northcliffe and Schilling but

10
are much lower than Brueckner and Metzler As energy increases, however,
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8
the Northcliffe and Schilling results drop much faster than the LOM results,

10while the Brueckner and Metzler curve approaches the LOM results. In

10
Figure 3b, the Bruckner-Metzler results and the LOM agree very well at all

8
energies, while the Northcliffe and Schilling curve is much lower. As argued

10,-ciln 8 dt o ev osa
by Brueckner and Metzler I

, the Northcliffe-Schilling data for heavy ions at

high energy are based on extrapolations from low energy data and are therefore

somewhat uncertain. Brueckner and MetzlerI0 calculate the bound electron

stopping power by using a Thomas Fermi model to evaluate the electronic exci-

tation energies and the Coulomb logarithm term in the stopping power equation;

hence, there is some similarity between their model and the LOM. However,

they use a different effective charge scaling law which results in a higher

effective charge.

III. FREE ELECTRON STOPPING POWER: PLASMA TARGETS

For heated target materials, the atoms become ionized, and stopping due

to free electrons must be considered. The free electron stopping cross section

is calculated from

4 2- y

Sf (V) = F(x) Zn + 2 + Zn (1 + 4 x2)  (15)mV b

where Z is the average charge of the target ions (currently obtained from a

Saha LTE equation-of-state), D is the Debye shielding length, and

2 1/2
x - (mV /2kT) I

, (16)

where kT is the electron temperature.

2

F(x) = erf(x) - 2 x e-x / T (17)
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The quantity b is the minimum impact parameter for electron-ion

scattering and is given by

b MJAX I-- (8
mV2m (18)

i.e., the maximum of either the classical or quantum-mechanical impact para-

meter defined by the uncertainty principle.

The first term in Eq. (15) is the short range ion-electron binary-

11
encounter scattering term and is taken from the work of Campbell . who

12
adapted it from Brueckner and Brysk . The second term is the polarization

13term and is taken from Pines and Bohm . For distances larger than D, the

plasma acts as a continuous medium, and distant collisions cause loss of

energy by the excitation of plasma oscillations, which appear as an oscil-

lating wake behind the projectile.

2
As discussed by Mehlhorn , the effective charge of the projectile ion

will be increased by the plasma free electrons due to increased collisional

ionization. A higher relative velocity occurs between ion and plasma than for

the cold target. Therefore, in Eqs. (11) and (18), the ion velocity is re-

placed by the addition of the ion velocity and electron thermal velocity in

a random phase manner. The scaling defined by Eq. (13) is also applied to

Eq. (15).

In a plasma target, the bound atomic electrons can be screened from the

projectile ions by the free electrons. Thus, the LOM must be modified to talke

this shielding effect into account. For an electron in an isolated atom, the

maximum impact parameter is V/w, where w is a characteristic frequency of

motion 1 4 15 . Plasma screening limits this parameter to the Debye length D.

Eq. (2) can be rewritten

-8-



r- (h/mV) * (W (r)/V)

Whenever V/w (r) > D, T is taken to be0

= h/mVD (19)

Thus, plasma shielding of the bound electrons is taken into account by limiting

the argument of the Bessel function as given by Eq. (19).

For a plasma target at a given temperature and ion density, a Saha LTE

model is used to obtain the average ionic charge Z. Using the LOM as modified

for plasma screening in combination with Zink's5 model for determining Thomas-

Fermi electron densities for partially-ionized atoms gives the bound electron

stopping cross section. Adding this result to Eq. (15) gives the total

electronic stopping cross section.

This formalism has been applied to the stopping power of Au at

kT = 200 eV and at 0.01 times solid density ) for carbon ions. The results
s

are shown in Figures 4a and 4b; also given are Mehlhorn's2 results for com-

parison. Mehlhorn's S b(V) results are generally higher, especially at high

energy, where the difference is 1 25 percent. As mentioned earlier,

Mehlhorn uses a Bethe model to calculate bound electron stopping at high

energy; the differences could be due to different effective Y's in the two

calculations. Also, Mehlhorn ignores plasma shielding effects on the bound

electrons, which would lead to smaller values of Sb(V). Figure 4b shows

the free electron stopping cross sections; here the agreement is good over

the entire energy range. Since free electron stopping clearly dominates the

bound electron contribution in this case, the total electronic stopping power

is approximately the same for both calculations, especially at the higher

energies.

Figure 5 shows a comparison with Brueckner and Metzler I0 for H atoms in

an AZ target at solid density and at kT = 10 eV and 2 keV. At 2 keV, AZ i3
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completely ionized, and the electronic stopping is totally due to free elec-

trons. The two calculations are in good agreement here. At 10 eV, bound

electron stopping cross sections are larger than the free electron cross

sections by about 50 percent; hence screening of the bound electrons is

important in this case. The Brueckner-Metzler result is about 30 percent

lower than the results of this model. As mentioned earlier, they use a

different model to calculate bound electron stopping. They take plasma

screening into account by using a combination of the Debye length D and the

isolated atom maximum impact parameter V/w.

Figure 6 shows total electronic stopping cross sections for protons on

solid density Au at kT - 10 eV and 2 keV; also shown are the Brueckner-

Metzler calculations. At 10 eV, stopping by bound electrons dominates the

cross sections; the two calculations are in very good agreement. At 2 keV,

free electron stopping predomin..tes. The Brueckner-Metzler results are about

20 to 25 percent lower; this is probably due to differences in the models for

free electron stopping power.

Figure 7 shows cross section calculations for U ions on a solid density

Ak target. At kT = 10 eV, there is a wide disparity between these results

and the Brueckner-Metzler calculations at low energy; at higher energy, their

results are approximately 30 percent lower. At 2 keV, there is a large dis-

agreement in the low energy range, but the results appear to be merging at

the high energy end. These differences appear to be explained by the differ-

ence in the effective charge scaling laws. According to Brueckner and Metzler,

their scaling law can show a ratio (Zeff/Z) 2 as large as twice the result of

Eq. (11) for energies of few MeV/amu.

Figure 8 shows conparisoas with Brueckner and Metzler for U ions at one-

tenth solid density Au at kT - 200 eV and 2 keV. The 2 keV results are
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similar in appearance to those of Figure 7, and the same statements regarding

scaling laws apply. The 200 eV curves are in reasonably good agreement for

energies > 4 MeV/amu. Free electron stopping dominates by factors of 1.5 to

2 at higher energies.

Nardi, Peleg, and Zinamon 15 (NPZ) have calculated electronic stopping

cross sections for protons in Au; comparisons with these results are shown in

the next two figures. Figure 9 shows free electron stopping cross sections at

solid density and kT = 1 key. The NPZ results for both collisional and non-

collisional plasma dielectric functions are shown; also given are calculations

based on Eq. (15) and the Brueckner-Metzler results. The agreement between

this model (Eq. (15)) and the NPZ non-collisional results is good over the

energy range 1 to 10 MeV. The Brueckner-Metzler curve agrees with the NPZ

collisional results at low energy but falls below the other calculations as

energy increases; at 10 MeV, the Brueckner-Metzler result is approximately

20 percent lower than the others.

Eq. (15) represents a type of model that NPZ refer to as "binary plus

collective", i.e., short range binary collisions plus long range crllecrive

effects; at high energies (> 4 MeV), they obtained good agreement between this

kind of model and their more complex dielectric function models. The results

of Eq. (15) as shown in Fig. 9 reinforce their conclusions; in fact, the

Eq. (15) results are in excellent agreement with their "binary + Pines-Bohm"

result. At low energies, where the projectile velocity is not large compared

to the electron thermal velocity, the dielectric function models predict lower

cross sections than the binary plus collective models.

Figure 10 shows free electron stopping cross sections for protons in Au

at one-hundredth of solid density and kT . 1 keV. The NPZ dielectric function

results, calculations based on Eq. (15), and Mehlhorn's2 dielectric function

and binary-plus-collective (i.e., Jackson 14 ) results are given. The
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dielectric function calculations of NPZ and Mehlhorn agree -'ery well in the

1 to 10 MeV range. Mehlhorn's binary-plus-collective results lie between the

dielectric function calculations and the results from Eq. (15). Again there

is some disparity at lower energies, but all the curves tend to merge at high

energy.

Figure 11 shows free electron stopping cross sections for protons in Au

at one-tenth solid density and kT - 50 eV. Results from Eq. (15) are shown

along with Mehlhorn's2 dielectric function calculations and his binary plus-

collective calculations. Agreement is good among the three results for energy

> 3 MeV. This again bears out the conclusion of NPZ and also Mehlhorn that,

in this energy range, the binary-plus-collective-oscillations model is in

good agreement with more complex dielectric function calculations.

The dependence of this model on electron temperature is displayed in

Figures 12 and 13. In both calculations, the cross sections at 10 eV are

lower than the cold target cross sections; this is due to shielding of the

bound electrons by the free plasma electrons. As the electron temperature

rises and the free electron contribution becomes more significant, the cross

section rises again so that, at 50 eV, they are larger than the cold target

cross sections. At energies above 5 MeV/amu for these calculations; the

cross sections continue to rise with increasing kT. At lower energies as

kT rises, the cross sections show a decrease. This is due to the function

7(x) (defined by Eq. (17)). This function is a measure of the Coulomb inter-

action between the projectile ion and the plasma electrons and restricts energy

losses by the projectile ion only to electrons with velocity lower than the

ion velocity. As kT increases, losses by low velocity ions to the plasma

decrease.

This initial drop in the stopping power as the temperature rises in the

target material is the same trend predicted by Brueckner and Metzlerl 0 ;
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however, their model predicts a much nore severe decrease than this model

indicates. This is probably due to differences in the models and in different

treatments of the plasma shielding effects.

Calculations with this model which omit this screening effect predict a

steady increase of stopping power with electron temperature, as Mehlhorn 2 pre-

dicts; there is no initial drop as kT rises above the cold target temperature.

Mehlhorn omits this plasma screening effect.

It should be noted that the differences between the cold target and the

1 keV cross sections in Fig. 12 are in good agreement with the results given

by NPZ15 for their cold target and "binary + Pines Bohm".

The effect of density in this model is shown in Fig. 14, where stopping

cross sections for U ions in Au and solid density ps and 0.1 0s are given for

10 eV, 100 eV, and 1000 eV. In each case, the lower density target gave

higher stopping cross sections. This effect is also predicted by Brueckner

and Metzler10 and Mehlhorn2 .

Mosher 3 has calculated a dimensionless correction term (in A - Zn As)

which is a measure of the difference between stopping powers for a heated

plasma and for a cold, neutral target; he shows the variation of this quantity

for targets with Z - 6 and Z = 81 for the range 10 eV < kT < 1000 eV at

several electron densities. in an effort to compare with these results, some

of the stopping cross sections calculated here were taken at a given energy,

the cold target results at the same energy were subtracted, and the difference

divided by the quantity

4we 4 Z1
2

N v2 z 
(20)

m Ve

'3to obtain a normalized, unitless difference analogous to Mosher's 3 .
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Results for U projectiles on Au targets at p - 0.1 - were chosen for

comparison; for this situation, Z - 79, and the product of Z times atomic

'3
number density is 4.6 x 10" ; this is reasonably close to his Z - 81,

N - 1023 case. Calculations were done for energies of 12 MeV/amu and

20 MeV/amu for this model, and similar calculations were done for these

energies from the Brueckner-Metzler
I0 data. The results are summarized in

Table 1.

TABLE 1: U - Au, p - 0.1 ps, Ne 20

E - 12 meV/amu E - 20 MeV/amu

I3 10 10:kT(eV) Mosher This model B-M This model B-M

10 0 -0.14 -0.64 -0.18 -0.69

100 O + 0.21 -0.37 + 0.23 -0.48

1000 + 4.3 + 1.68 + 1.80 + 1.68 + 1.75

Mosher's correction term is independent of projectile velocity and

depends only on the target plasma. Both the Brueckner-Metzler10 results

and calculations from this model appear to verify this conclusion in this

energy range. The model used in this report agrees fairly well with

Mosher 3at 10 eV and at 100 eV and with Brueckner and Metzler at 1000 eV,

where Mosher's result is larger by a factor of order 2.5. The Brueckner-

Metzler10 results are much lower than Mosher's3 at each value of kT.

Mosher 3 also presents results for this correction term for a target Z

of 6 and several electron densities. Calculations were done for protons

incident on carbon atoms at E 1 10 MeV/amu and 20 MeV/amu and at electron

20 23
densities of 10 and 10 . Comparisons are given in Table 2.
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TABLE 2: H -C

1 020 1023 !
No 10 N 10a

T W) 3 MeV 3 -- V-
kT (eV) Mosher 3  E-10 Ew20 - Mohe E10 MV

amu amu Ii

10 ' + 3.04 + 3.08 :' -0.5 + 0.03 + 0.16

30 ' + 0.2 + 3.25 + 3.25 -. 0 + 1.13 + 1.06

100 + 2.8 + 5.44 + 5.50 + 0.4 + 1.86 + 1.84

300 + 4.5 + 5.50 + 5.50 ++ 1.7 + 2.40 + 2.40

1000 + 6.4 + 5.34 + 5.53 + 2.8 + 2.34 + 2.44

The results of this model are again approximately independent of velocicl

in this energy range. Mosher's 3 results for N - 1020 vary over a much widere

range as kT changes; this may be due to a difference of ionization models.
1233

The results at Ne - 10 are generally higher than Mosher's3 except at I keY,

where they are comparable.
3

The differences with Mosher's results are probably due to different free

electron stopping pcwer models.

IV. CONCLUSIONS

A local oscillator model for bound atomic electron stopping power has

been utilized to calculate stopping cross sections for several projectile ions

in cold targets; Thomas Fermi electron densities as proposed by Zink 5 were

used in the computations. Good agreement with standard results 7 8 were

obtained over the entire energy range. Thus the LOM appears to have a

solid basis as a model for bound electron stopping power.

Using Zink's 5 formulation, this model was extended to partially ionized

atoms and modified to take into account shielding of the bound atomic electrons

i -15-



by the free plasma electrons. It was then combined with a binary-collisions-

plus-collective-oscillations model of free electron stopping power to calculate

total electron stopping power in heated plasmas.

In most instances, reasonable agreement with comparison calculations was

obtained; hence some confidence in these results are justified.

From an examination of Figures 4 through 11, it is apparent that, in the

treatment of free electron stopping power, this model is closer to those of

2 15 10
'lehlhorn and NPZ than it is to that of Brueckner and Metzler . Both NPZ

and Mehlhorn agree that, in the high energy range, the so-called binary-plus-

collective oscillations approach as represented by Eq. (15) yields results in

good agreement with more complex dielectric function calculations. There are

differences in the treatment of bound electron stopping power: Mehlhorn and

NPZ use the Bethe theory, while this report adopts the local oscillator model.

One of the questions still to be settled is the effective charge on the

projectile ion. The expression obtained by Brown and Moak6 was used here, but

Brueckner and Metzler10 adopt an expression that yields a higher effective

charge.

.Another problem which this model does not address, but which is under

study, is the problem of electron degeneracy which arises at densities well

above solid densities. Any detailed study of ICF plasmas must include

degeneracy effects.
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